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Abstract. Many pattern recognition tasks make use of the k nearest
neighbour (k–NN) technique. In this paper we are interested on fast k–
NN search algorithms that can work in any metric space i.e. they are
not restricted to Euclidean–like distance functions. Only symmetric and
triangle inequality properties are required for the distance.
A large set of such fast k–NN search algorithms have been developed
during last years for the special case where k = 1. Some of them have
been extended for the general case. This paper proposes an extension of
LAESA (Linear Approximation Elimination Search Algorithm) to find
the k-NN.

1 Introduction

The k nearest neighbour problem consists in finding the k nearest points (pro-
totypes) from a database to a given point sample using a dissimilarity function
d(·, ·). This problem appears often in computing problems and, of course, in
pattern recognition tasks [2].

Usually, a brute force approach is used but, when the database is large and/or
the dissimilarity function is computationally expensive, this approach results in
a real bottleneck.

In this paper we are interested in fast k-NN algorithms that can work in
any metric space i.e. the algorithm is not restricted to work with Euclidean–
like dissimilarity functions, and no assumption is made about the point’s data
structure. It is only required that the dissimilarity function fulfils the following
conditions:

– d(x, y) = 0 ⇔ x = y.
– d(x, y) = d(y, x) (symmetry).
– d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

That is, the dissimilarity function defines a metric space, and thus can be prop-
erly called a distance function.
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Such algorithms can efficiently find the k–NN when the points are represented
by structures like strings, trees or graphs and the distance functions can be some
variants of the edit distance ([9], [10]).

Many general metric space k–NN fast search algorithms have been developed
trough these years for the special case where k = 1 (Fukunaga and Narendra’s [3],
Kalantary and McDonald’s [5], AESA [8], LAESA [7], TLAESA [6], . . .). One of
these algorithms has been extended for the general case (k-AESA [1]).

This paper proposes an extension of LAESA (Linear Approximation Elim-
ination Search Algorithm) fast 1–NN search algorithm to cope with the k–NN
problem.

2 The LAESA

As an evolution of AESA algorithm, LAESA is a branch and bound algorithm
based on the triangle inequality.

In a preprocessing step a set of nbp base prototypes are selected and their
distances to the rest of prototypes are stored in a table.

When searching the nearest neighbour of a sample s, first a lower bound
(g[·]) of the distance from each prototype (p) to the sample is computed. This
lower bound distance is based on the triangle inequality and can be computed
as follows:

g[p] = MAX
nbp

i=1(|d(bi, p) − d(s, bi)|) (1)

where d(bi, p) is the precomputed distance between p and the base prototype bi,
and d(s, bi) is the actual distance between the sample s and bi.

After that, the prototype set is traversed in ascending order of g[·] until a
prototype with a distance to the sample lower than the lower bound distance is
found. Then the traversal stops and the nearest prototype to the sample found
so far is outputed as the nearest neighbour.

The performance of the algorithm depends on the number of base prototype
and the way they are selected. In [7] it was shown that selecting the prototypes
so that they are maximally separated is a good choice. A pseudo-algorithmic
description of LAESA is shown in figure 1.

LAESA was devised to work with very time consuming distances, then, in
practice, the time cost of the algorithm is dominated by the number of distance
computations (nd). In [7] it was shown that in most usual cases nbp is practically
independent of the database size (n) and can be set to a number much smaller
that n. Nevertheless, worst-case time complexity can be expressed as O(n +
nd log n), but since nd in practice does not grow with n, the expended time grows
linearly with n. Please note that nd includes the distances to base prototypes,
so nd is always bigger than nbp. The space complexity of LAESA can be expressed
as O(nbpn).
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Preprocessing (given the number nbp of base prototypes)

1. Select the nbp base prototypes B maximally separated
2. Compute and store the distances d(b, p) ∀b ∈ B ∀p ∈ P

Classification (input: the sample s; output: the nearest neighbour of s, pmin)

1. compute and store the distances d(b, s) ∀b ∈ B
2. pmin = argminb∈Bd(b, s) and compute the lower bound g[p] ∀p ∈ P
3. for all p in P in ascending order of g[p]

(a) if g[p] > d(pmin, s) stop the algorithm
(b) compute d(p, s); if d(p, s) < d(pmin, s) then pmin = p

Fig. 1. The LAESA

3 Extending LAESA to k–LAESA

Instead of stopping the algorithm when the lower bound distance of the current
prototype is bigger than its distance to the sample (line 3a), the algorithm is
stopped when the lower bound distance is bigger that the kth nearest neighbour
found so far.

K–LAESA must store the k nearest neighbours found up to the moment.
As k is lower than n the space and time complexity does not change.

As can be expected, our experiments show that the number of distance com-
putations increases as the value of k increases. Despite of this, the total number
of distance computations remains much lower than exhaustive k–NN search,
thus k–LAESA can be very useful when distance computations are very expen-
sive.

4 Experiments

K–LAESA is intended for tasks where a very time consuming distance is re-
quired. The actual bottleneck in these tasks is the number of distance computa-
tions (nd). Thus, the experiments reported here are focused exclusively on the
number of distance computations for several tasks.

In a first set of experiments, 4 and 10 dimension spaces along with the Eu-
clidean distance were used. Of course, there are some specially designed fast k–
NN algorithms for such spaces that can beat LAESA and k–LAESA (remind that
LAESA was devised for very time consuming distances). Those experiments are
included just to show the behaviour of LAESA in a well known metric space.

Second, some experiments with misspelled words and the edit distance were
performed to show k–LAESA’s behaviour in its application field.
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Fig. 2. Searching for optimal number of base prototypes in uniform distributions

Table 1. Optimal values of nbp for uniform distribution data

Value Dimensionality
of k 4 10

1 7 50
5 8 90
10 9 120
20 12 155

4.1 Experiments with the Euclidean Distance

For these experiments the well-known uniform distribution on the 4 and 10
dimension unit hipercube has been chosen as a reference.

First the optimal number of base prototypes has to be found. Then the
evolution of the number of distance computations (nd), for different values of k
(1, 5, 10, 20), is studied when the number of prototypes grows.

As shown in figure 2, the optimal values of nbp depends on the dimension and
on the value of k. Those values (table 1) are used on the following experiments.

Next, the number of distance computations was studied as the database grows
(1024, 2048, 4096, 6144 and 8192 prototypes). The test set was a collection
of 1024 samples. For each database size, the experiment was repeated for 16
different pairs train/test set in order to obtain sounder results. In figure 3 it can
be observed that nd grows very slightly with respect to the database size, but,
as figure 4 shows, nd grows as the value of k increases (only the results for 2048
prototype database is plotted).

4.2 Experiments with the Edit Distance

In these experiments a dictionary of more than 60000 words was used. To ob-
tain test words, one edition mistake (insertion, deletion or substitution) was
equiprobably introduced in each word. Only results for k = 1 and k = 5 will be
reported here.
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Fig. 3. Distance computations for uniform distributions
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Fig. 4. Distance computations as k increases (uniform distributions)

As in previous experiments, exhaustive experiments were developed to obtain
the optimal value of nbp for each value of k; the results are plotted in figure 5. The
optimal values obtained were 102 base prototypes for k = 1 and 510 base proto-
types for k = 5. Then, experiments with databases of increasing sizes and 1000
samples were performed. The number of distance computations (nd) obtained in
these experiments is plotted in figure 6, which confirms that the increasing in nd

depends more on the value of k than on the size of the database.

5 Conclusions

We have developed an extension of LAESA to find the k nearest neighbours. This
new algorithm (k–LAESA) is intended for tasks where the distance computation
is very time consuming. No special data structure is required for points, only the
distance is required to fulfill the symetric and the triangle inequality properties.
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Fig. 5. Searching optimal nbp for distorted words
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Fig. 6. Distance computations for distorted words

The experiments reported in this work show that the number of distance
computations grows with the value of k, but remains always much lower than
k–NN exhaustive search. This number of distance computations seems to grow
very slowly with the database size. Also, the space required by this algorithm
is almost linear with the database size. K–LAESA is good alternative when the
distance computation is very time consuming and the database is large.
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